[Comparison of image distortion between three magnetic resonance imaging systems of different magnetic field strengths for use in stereotactic irradiation of brain].
نویسندگان
چکیده
In this study, we evaluated the image distortion of three magnetic resonance imaging (MRI) systems with magnetic field strengths of 0.4 T, 1.5 T and 3 T, during stereotactic irradiation of the brain. A quality assurance phantom for MRI image distortion in radiosurgery was used for these measurements of image distortion. Images were obtained from a 0.4-T MRI (APERTO Eterna, HITACHI), a 1.5-T MRI (Signa HDxt, GE Healthcare) and a 3-T MRI (Signa HDx 3.0 T, GE Healthcare) system. Imaging sequences for the 0.4-T and 3-T MRI were based on the 1.5-T MRI sequence used for stereotactic irradiation in the clinical setting. The same phantom was scanned using a computed tomography (CT) system (Aquilion L/B, Toshiba) as the standard. The results showed mean errors in the Z direction to be the least satisfactory of all the directions in all results. The mean error in the Z direction for 1.5-T MRI at -110 mm in the axial plane showed the largest error of 4.0 mm. The maximum errors for the 0.4-T and 3-T MRI were 1.7 mm and 2.8 mm, respectively. The errors in the plane were not uniform and did not show linearity, suggesting that simple distortion correction using outside markers is unlikely to be effective. The 0.4-T MRI showed the lowest image distortion of the three. However, other items, such as image noise, contrast and study duration need to be evaluated in MRI systems when applying frameless stereotactic irradiation.
منابع مشابه
Design, Construction and Evaluation of an Anthropomorphic Head Phantom for Assessment of Image Distortion in Stereotactic Radiosurgery Planning Systems
Introduction: In recent years, the use of magnetic resonance (MR) images in radiation treatment planning has drawn considerable attention. However, although the extent of a tumor can be determined in great detail on MR images, the geometric accuracy of these images is limited by distortions stemming from the inhomogeneity of the static background magnetic field, the nonlineari...
متن کاملFabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملGeometric distortion evaluation of magnetic resonance images by a new large field of view phantom for magnetic resonance based radiotherapy purposes
Background: The magnetic resonance imaging (MRI)-based radiotherapy planning method have been considered in recent years because of the advantages of MRI and the problems of planning with two images modality. The first step in MRI-based radiotherapy is to evaluate magnetic resonance (MR) images geometric distortion. Therefore, the present study aimed to evaluate system related geometric distort...
متن کاملFabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...
متن کاملPseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm
Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nihon Hoshasen Gijutsu Gakkai zasshi
دوره 69 6 شماره
صفحات -
تاریخ انتشار 2013